

EVALUATION DES
CONCENTRATIONS EN DIOXYDE
D'AZOTE A PROXIMITE DES
PRINCIPAUX AXES ROUTIERS
DANS LA ZONE DE LA CACEM

2023

Evaluation des concentrations en dioxyde d'azote à proximité des principaux axes routiers dans la zone de la CACEM

Année 2023

Madininair : Observatoire de la Qualité de l'Air

Rapport édité sous système de management de la qualité certifié AFAQ ISO 9001 : 2015

	Rédaction	Approbation
Nom	K.RAMASSAMY	C.BOULLANGER
Qualité	Ingénieure d'études	Responsable études
Visa	JAROY	AM

SOMMAIRE

l.	Prés	sentation de l'étude	4
II.	Con	texte de l'étude	5
- 1	.1	Polluant étudié : Le dioxyde d'azote	5
	II.1.:	1 Origine et sources	5
	II.1.	2 Réglementation et norme	5
	II.1.3	3 Effets sur la santé	E
	II.1.	4 Effets sur l'environnement	е
- 1	.2	Emissions de NOx sur le territoire de la CACEM	7
- 1	.3	Description des campagnes de mesures	8
III.	Mat	ériels et méthodes	9
	III.1.	1 Sur le site	9
- 1	1.2	Au laboratoire	9
IV.	Don	nées météorologiques	10
Γ	V.1	Pluviométrie	10
ľ	V.2	Vent	10
V.	Rési	ultats à proximité des principaux axes routiers	11
\	/.1	Evaluation du risque de dépasser les normes environnementales	11
\	/.2	Spatialisation des mesures	13
VI.	Evol	ution des concentrations en NO ₂ depuis 2012 sur le territoire de la CACEM	14
\	/I.1	Méthodologie du calcul de la tendance d'évolution	14
\	/1.2	Tendance sur les principaux axes routiers de la CACEM depuis 2012	15
\	/I.3	Comparaison entre les tendances et les concentrations en dioxyde d'azote	17
VII.	Con	clusion	19
VIII	. Ann	exes	20
\	/III.1	Cartes d'implantation	20
\	/III.1	Données	24

I. Présentation de l'étude

L'observatoire régional de la qualité de l'air en Martinique, Madininair, certifié ISO 9001, dispose actuellement de 7 stations de mesure dispersées stratégiquement sur le territoire de la Communauté d'Agglomération du Centre Martinique (CACEM). Ces stations mesurent en continu et en temps réel divers polluants : le dioxyde de soufre SO₂, les oxydes d'azote NOx, l'ozone O₃, les particules PM10 (inférieures à 10 microns), les particules fines PM2,5 (inférieures à 2,5 microns) et le benzène.

La problématique du transport sur le territoire de la CACEM incite les collectivités à approfondir leurs connaissances en termes de spatialisation de la pollution automobile sur le territoire. Ainsi, Madininair a été sollicité par la CACEM, dans le cadre de son programme AIR, pour réaliser, en complément des mesures fixes, une étude de spatialisation du dioxyde d'azote, NO₂, pris comme traceur de la pollution automobile.

En effet, les communes de Schoelcher, Fort de France et du Lamentin sont traversées par un réseau filaire dense (axe autoroutier de 123 000 véhicules par jour et axes nationaux de 95 000 véhicules par jour). Une étude a ainsi été réalisée en 2023 dans le but d'évaluer l'évolution du trafic dans cette zone, de valider les données de modélisation de la pollution routière effectuée par Madininair, de renseigner et compléter les plans et programmes tels que le Plan Climat Air Energie Territorial, le Schéma de Cohérence Territorial, les Plans de Déplacement Urbain, le Programme de Surveillance de la Qualité de l'Air... et ainsi, fournir une aide éventuelle à la décision locale sur des projets concernant l'urbanisme, les transports, l'aménagement ou l'environnement en général.

Le but de cette étude est donc d'évaluer la concentration de dioxyde d'azote NO₂ présente sur différents sites des principaux axes routiers (Schœlcher, Fort-de-France et Lamentin), et de confronter les résultats obtenus avec les normes environnementales en vigueur. Cette étude nous permet d'établir une cartographie de la pollution automobile sur les principaux axes routiers, ainsi que d'évaluer une tendance d'évolution de la qualité de l'air sur les axes routiers.

II. Contexte de l'étude

II.1 Polluant étudié : Le dioxyde d'azote

II.1.1 Origine et sources

Le dioxyde d'azote (NO₂) se forme dans l'atmosphère à partir du monoxyde d'azote (NO) qui se dégage essentiellement lors de la combustion de matières fossiles, dans la circulation routière, par exemple. Les sources principales sont les véhicules et les installations de combustion (centrale thermique, incinérateur, raffinerie, ...).

Les concentrations de NO et de NO₂ augmentent en règle générale dans les villes aux heures de pointe.

Les concentrations de dioxyde d'azote (NO_2) ainsi que celles du monoxyde d'azote (NO_2) mesurées par les capteurs proches du trafic automobile ont diminué mais l'effet reste encore peu perceptible compte tenu de l'augmentation forte du trafic. Ces évolutions sont à mettre en relation avec les modifications apportées aux véhicules (principalement la généralisation du pot catalytique), principaux émetteurs de ces polluants.

II.1.2 Réglementation et norme

L'arrêté du 16 avril 2021 définit les normes environnementales du NO₂. La directive européenne 2008/50/CE précise que la norme annuelle est comparable à une concentration calculée sur la base d'une mesure effectuée pendant 14% du temps de l'année, répartie dans l'année.

Période de base	Intitulé de la norme	Valeur de la norme NO ₂ (μg/m³)
Année (Santé)	Valeur Limite annuelle	40

Tableau 1 : Normes environnementales pour le dioxyde d'azote (Arrêté du 16 avril 2021)

La directive européenne 2008/50/CE définit des seuils d'évaluation inférieur et supérieur permettant d'évaluer le risque de dépassement des normes environnementales si la mesure était réalisée toute l'année.

Période de base	Intitulé de la norme	Valeur du seuil NO ₂ (μg/m³)
Année	Seuil d'évaluation supérieur	32
(Santé)	Seuil d'évaluation inférieur	26

Tableau 2 : Seuils d'évaluation pour le dioxyde d'azote (Arrêté du 16 avril 2021)

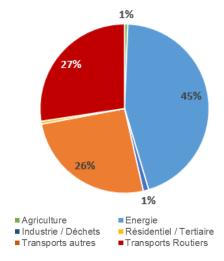
Le NO₂ est un gaz irritant qui pénètre dans les fines ramifications des voies respiratoires.

- Les études sur les populations humaines indiquent que l'exposition à long terme peut altérer la fonction pulmonaire et augmenter les risques de troubles respiratoires.
- Le dioxyde d'azote est irritant pour les bronches, pénètre dans les voies respiratoires profondes, où il fragilise la muqueuse pulmonaire face aux agressions infectieuses, notamment chez les enfants.

Aux concentrations rencontrées habituellement, le dioxyde d'azote provoque une hyperréactivité bronchique chez les asthmatiques.

II.1.4 Effets sur l'environnement

Le dioxyde d'azote se transforme dans l'atmosphère en acide nitrique, qui retombe au sol et sur la végétation. Cet acide contribue, en association avec d'autres polluants, à l'acidification des milieux naturels et donc participe aux phénomènes de pluies acides

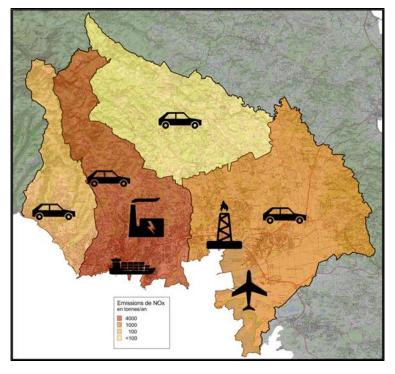

- Les effets sur les végétaux : les effets négatifs des oxydes d'azote sur les végétaux sont la réduction de la croissance, de la production et de la résistance aux pesticides.
- Les effets sur les matériaux : les oxydes d'azote accroissent les phénomènes de corrosion.

Le NO_2 est également un précurseur de l'ozone (O_3) qui est, en basse altitude, un composé néfaste pour la santé humaine et l'environnement.

II.2 Emissions de NOx sur le territoire de la CACEM

Les résultats ci-dessous sont les estimations d'émissions pour les zones concernées, regroupées en grands secteurs d'activités. Elles sont issues de l'Inventaire des émissions de polluants atmosphériques et gaz à effet de serre de 2020, qui recense les émissions de l'année 2018.

Dans les communes de la CACEM, 3770 tonnes d'oxydes d'azotes ont été émises en 2018, soit 58% du total régional.



Graphique II-1 : Sources principales et émissions annuelles de NOx sur la zone de la CACEM

Le secteur énergétique est le principal émetteur de NO_x sur le territoire de la CACEM. La production thermique d'électricité et le raffinage du pétrole produisent 45% des NO_x de la zone, soit 1688 tonnes en 2018.

Les routes de la CACEM sont responsables du rejet de 1033 tonnes de NOx, soit 27%. Les axes routiers du centre sont les plus empruntés de l'île, les embouteillages y sont récurrents aux heures de pointe.

Le trafic maritime du port de Fort-de-France et l'aéroport Aimé Césaire apportent 26% des émissions, avec respectivement 836 et 130 tonnes de NO_x rejetées en 2018.

	NO _x (tonnes/an)
Fort-de- France	2 849
Le Lamentin	808
Saint-Joseph	66
Schoelcher	48

Carte II-1 : Emissions de NOx dans les communes de la CACEM

La commune de Fort-de-France est le siège de la majorité des émissions de la zone CACEM : 76%. La commune accueille en effet une centrale thermique de production électrique, mais également, une zone portuaire par laquelle transitent quelques 3 millions de tonnes de marchandises et près de 700 000 passagers chaque année. Enfin, Fort-de-France connait un trafic routier dense : l'autoroute, par laquelle circulent 120 000 véhicules chaque jour, et la rocade (RD41) sont parmi les axes les plus empruntés de l'île.

Le territoire du Lamentin émet 21% des NO_x de la CACEM. La présence d'une raffinerie et de l'aéroport Aimé Césaire explique ces rejets. Commune centrale de Martinique, les axes routiers du Lamentin sont également très empruntés : l'autoroute, la RN5 et la RN1 notamment.

Les communes de Schoelcher et Saint-Joseph sont le siège d'émissions de NO_x comparativement faibles. Communes principalement résidentielles, les NO_x émis proviennent essentiellement du trafic automobile.

II.3 Description des campagnes de mesures

Dans le but de fournir une spatialisation en NO₂ sur les principaux axes routiers des communes de Fort de France, Lamentin, Schoelcher, et Saint-Joseph une étude a été réalisée durant les mois de mars à octobre 2023.

Ces quatre campagnes successives, de 2 semaines chacune, représentent 14% du temps de l'année, permettant d'estimer une moyenne annuelle, et ainsi de comparer ces données aux normes environnementales en vigueur.

Campagne	Date de début	Date de fin
1	15/03/2023	29/03/2023
2	19/04/2023	03/05/2023
3	13/09/2023	27/09/2023
4	27/09/2023	11/10/2023

III. Matériels et méthodes

III.1.1 Sur le site

La méthode de prélèvement du NO_2 est celle des tubes passifs. Le principe général consiste en un tube vertical ouvert à sa partie inférieure, et contenant en sa partie supérieure interne, un support solide (grilles) imprégné d'une substance chimique (triéthanolamine+BRIJ35) adaptée à l'absorption de NO_2 qui diffuse naturellement dans le tube.

Pendant la durée d'exposition du tube dans l'atmosphère, le gaz NO_2 est piégé dans le tube sous forme de nitrite NO_2 .

Les tubes sont posés à environ 2 mètres du sol, essentiellement pour des raisons de vandalisme, sur des supports (lampadaire, poteau...) tout en restant représentatifs de l'air respirable. Les tubes sont posés sur des supports qui sont fixés au poteau à l'aide de collier de serrage.

Cette étude dure 14% de l'année, temps minimum à une représentativité de la pollution à l'échelle annuelle (*Cf. directive européenne 2008/50/CE*).

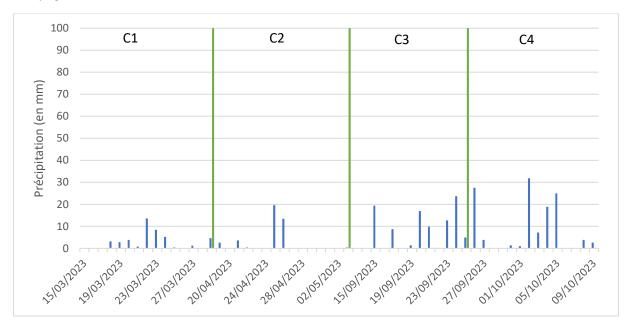
Le tube sera laissé ouvert pendant une période de 15 jours, puis remplacé par un autre et cela de façon successive, sans interruption.

Les tubes sont ensuite retournés en laboratoire afin de déterminer la masse de NO_2^- captée. La masse de nitrite NO_2^- est convertie en termes de concentration volumique dans l'air.

III.2 Au laboratoire

Après échantillonnage, les tubes sont analysés le plus rapidement possible par le laboratoire de Madininair. L'analyse se fait par spectrophotométrie. Dans chaque tube l'ajout d'une solution, qui réagit avec le NO_2^- , donne une coloration plus ou moins rose en fonction de la concentration en NO_2^- .

Une fois la coloration développée (2h), on mesure l'absorbance des différentes solutions obtenues, qui sont comparés à la droite d'étalonnage, préalablement établie à partir de solutions étalons.


On obtient des concentrations en microgramme de nitrite par millilitre de réactif colorimétrique utilisé et correspondant au gaz NO₂ capté par les supports imprégnés.

Les concentrations dans l'air, en microgramme par mètre cube d'air ($\mu g/m^3$), sont ensuite calculées en tenant compte de la durée d'exposition et du débit de diffusion à l'intérieur du tube.

IV. Données météorologiques

IV.1 Pluviométrie

Les conditions climatiques sont les paramètres les plus importants dans la dispersion des polluants atmosphériques. Il faut donc en tenir compte lorsque l'on compare les données des différentes campagnes.

Graphique IV-1 : Précipitation durant la période de mesure sur la station « Desaix » de Météo France

La pluie, joue un rôle de lixiviation de l'atmosphère. On pourra donc s'attendre à des concentrations plus faibles en NO_2 les jours de pluies. Durant les campagnes de mesure, le temps est mitigé avec quelques jours de pluies. L'observation des moyennes journalières montre que la hauteur d'eau maximale a été mesurée le 02/10/23 avec 31.8 mm d'eau. Sur la période de mesure des quatre campagnes, le cumul des pluies obtenu est de 304.8 mm d'eau.

IV.2 Vent

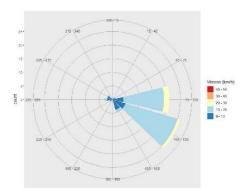
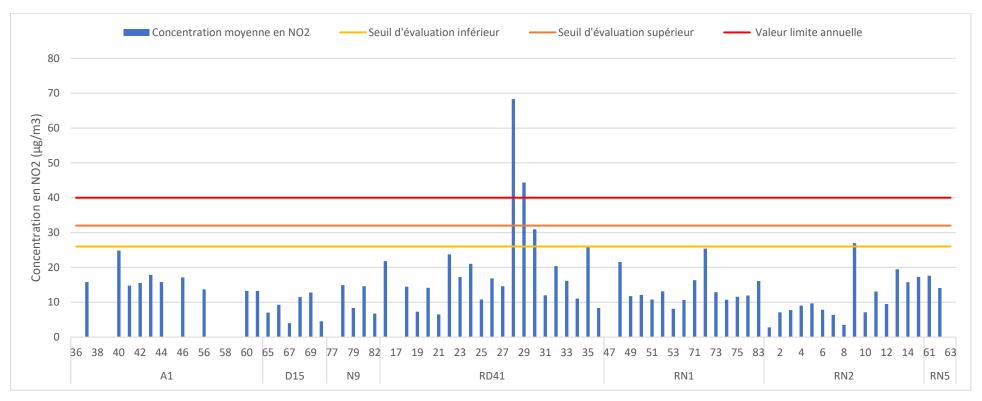
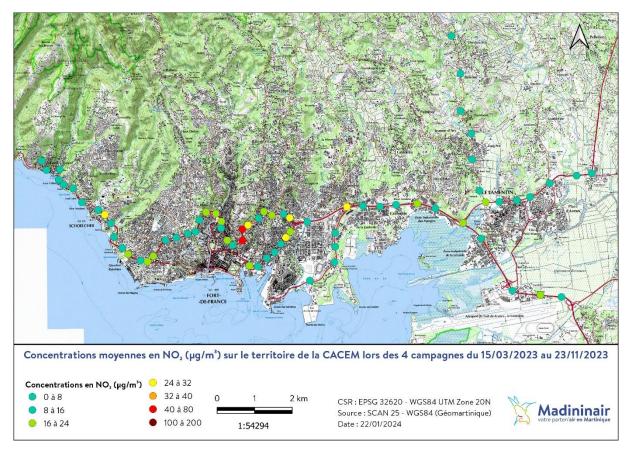


Figure IV-1 : Rose des vents sur la station « Desaix » de Météo France


Durant la période de mesure, la vitesse moyenne des vents enregistrée s'élève à 12.1 km/h, avec un maximum journalier de 20.9 km/h.

Sur le site de mesure à Fort-de-France, les vents sont principalement orientés de secteur Est.


V. Résultats à proximité des principaux axes routiers

V.1 Evaluation du risque de dépasser les normes environnementales

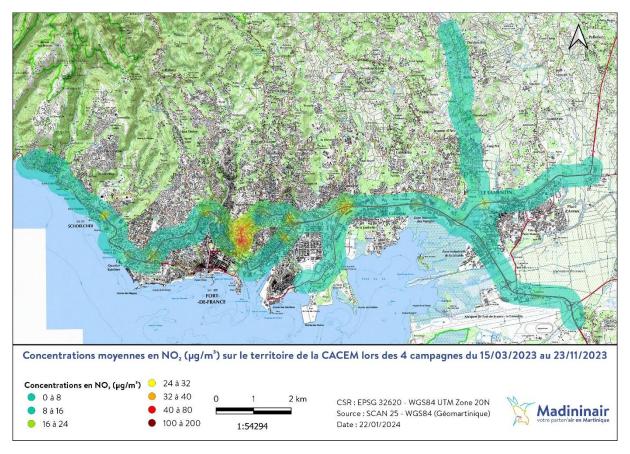
L'étude porte également sur les principaux axes routiers de l'agglomération de la CACEM. Cette zone comprend les routes nationales RN1, RN2, RN5, RN9, la rocade RD41, RD15, et l'autoroute A1.

Graphique VI-1: Concentrations moyennes en NO_2 aux différents points de mesure sur les principaux axes routiers en 2023

Carte VV-1 : Cartographie des concentrations moyennes en NO₂ (µg/m³) sur les principaux axes routiers en 2023

Le graphique et la carte ci-dessus reprennent les concentrations moyennes relevées sur les sites de mesure des principaux axes routiers en 2023.

On recense 2 sites qui dépassent la valeur limite pour la protection de la santé (points rouges sur la carte ci-dessus). Ces deux sites se situent sur la rocade RD41, à proximité du tunnel de Concorde. Cet axe enregistre un trafic dense de plus de 100 000 véhicules par jour.


Ces deux concentrations les plus élevées sont mesurées sur les sites 28 et 29 (cf. Implantations des points en annexe) sur la rocade RD41, qui se trouvent à proximité de l'entrée du tunnel de Concorde, en direction du Lamentin. Ces concentrations moyennes s'élèvent respectivement à $68\mu g/m^3$ et $44\mu g/m^3$. A noter qu'à proximité de ces sites, Madininair surveille les concentrations en dioxyde d'azote en continu et en temps réel par l'implantation d'une station de mesure fixe, depuis 2007.

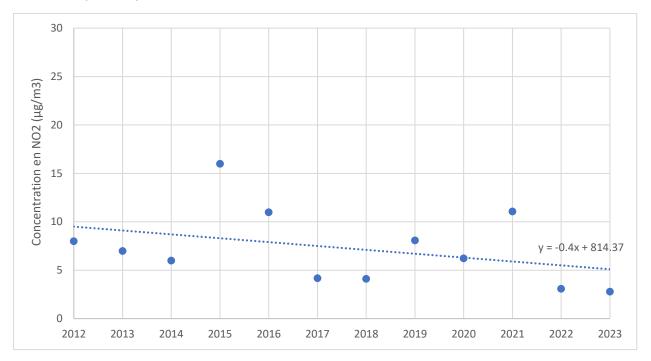
En plus de ces 2 dépassements de la valeur limite pour la protection de la santé, 5 sites enregistrent une concentration moyenne en NO_2 supérieure au seuil d'évaluation inférieur de $26~\mu g/m^3$. Ils sont situés sur la rocade RD41, la RN1, la RN2 et sur l'autoroute A1. Ainsi, le risque de dépasser la valeur limite annuelle pour la protection de la santé, si la mesure était effectuée toute l'année, est modéré principalement aux abords de ces principaux axes routiers.

Ces portions de route sont très fréquentées et fortement embouteillées aux heures de pointe. De plus, ces sites sont situés dans des montées, ce qui engendre une augmentation des émissions en polluant automobile.

V.2 Spatialisation des mesures

On se base sur les concentrations moyennées des 4 campagnes en chaque point de mesure pour réaliser une spatialisation de la pollution automobile.

Carte VV-2 : Spatialisation des concentrations moyennes en NO₂ (µg/m³) sur les principaux axes routiers en 2023


Cette carte ci-dessus permet de visualiser les zones impactées par la pollution automobile le long des principaux axes routiers. Les concentrations en NO₂ sont plus élevées le long des principaux axes routiers : A1 et RD41. Les concentrations maximales sont mesurées de la rocade RD41 à l'autoroute A1. Les concentrations diminuent progressivement dès que l'on s'éloigne de ces axes.

VI. Evolution des concentrations en NO₂ depuis 2012 sur le territoire de la CACEM

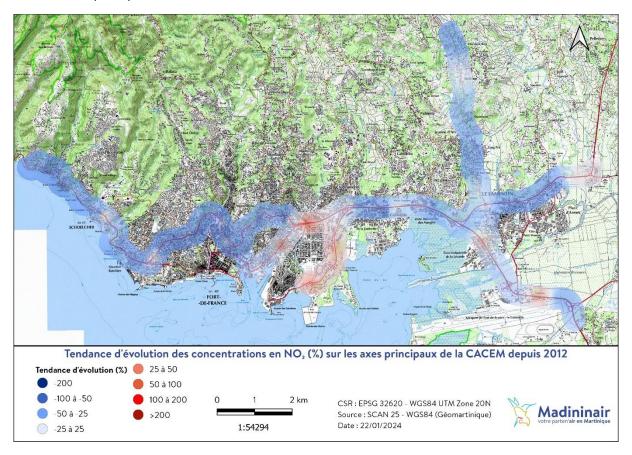
VI.1 Méthodologie du calcul de la tendance d'évolution

Afin de discuter de l'évolution historique des concentrations en dioxyde d'azote (NO₂), le choix a été fait de réaliser l'analyse des résultats sur la base de l'étude de la tendance d'évolution.

Cette tendance d'évolution est déterminée à partir des résultats issus des campagnes de mesure qui remontent à 2012 pour les axes routiers. La figure suivante illustre un exemple de calcul de la tendance d'évolution pour un point de mesure (tube 1 situé sur la RN2).

Graphique VII-1: Tendance d'évolution (droite bleue) déduite à partir de l'évolution historique des concentrations annuelles

Les points bleus illustrent les concentrations annuelles historiques mesurées depuis 2012 sur ce site placé sur la route Nationale 2 dans le quartier Fond Lahaye. La droite bleue illustre la courbe de tendance obtenue à partir de ces concentrations annuelles et reflète l'évolution moyenne sur la période de 2012 à 2023.


La courbe de tendance présente une pente négative. Ainsi, la tendance d'évolution illustre une baisse des concentrations en NO₂ sur ce site de mesure (tube1). Les paramètres spécifiques à la courbe de tendance permettent de quantifier cette baisse qui représente en 2023 une diminution de 46% par rapport aux évaluations réalisées chaque année depuis 2012.

Les résultats qui suivent illustrent ce même travail réalisé sur l'ensemble des sites de mesure.

VI.2 Tendance sur les principaux axes routiers de la CACEM depuis 2012

Remarque : Les évolutions historiques des concentrations annuelles en NO_2 et les tendances d'évolution qui en sont déduites sont présentées sous forme de tableau à l'annexe 2.

La figure suivante illustre la spatialisation des tendances d'évolution en pourcentage spécifiques aux axes routiers principaux du territoire de la CACEM.

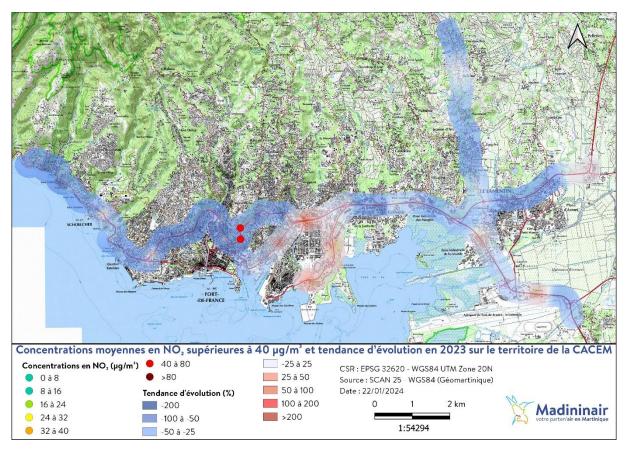
Carte VII-1 : Spatialisation de la tendance d'évolution des concentrations en NO_2 sur les axes routiers principaux de la CACEM depuis 2012

<u>A noter</u>: Les tendances d'évolution à la baisse (valeurs négatives) sont illustrées par des couleurs qui tirent vers le bleu. A l'inverse, les tendances à la hausse (valeurs positives) sont illustrées par des couleurs qui tirent vers le rouge. Le blanc correspond à une stagnation des concentrations.

D'après la carte ci-dessus, les concentrations en NO_2 , depuis 2012, ont généralement une tendance d'évolution à la baisse. En effet, une diminution de 43% des concentrations moyennes en NO_2 mesurées sur l'ensemble des axes principaux (A1, N1, N2, N5, D15 et D41), est mesurée depuis le début des mesures en 2012. En 2023, un seul axe a une tendance d'évolution à la hausse depuis 2012, la RN9.

Le tableau ci-dessous présente une synthèse des tendances d'évolution moyenne par axe.

Axes	Tendance moyenne (%)
A1	-33.3
D15	-45.4
D41	-56.5
N1	-34.4
N2	-54.2
N5	-26.5
N9	+3.8


Tableau VII-3 : Tendance d'évolution moyenne par axe

La majorité des axes routiers montrent une tendance moyenne à la baisse des concentrations en NO_2 depuis 2012. Une baisse maximale de 56.5% a été mise en évidence sur la rocade D41, axe sur lequel les concentrations moyennes maximales sont observée en 2023.

Toutefois, la RN9 montre une tendance moyenne à la hausse, enregistrant une augmentation d'environ 3.8% des concentrations en NO₂ sur cet axe. Cela peut s'expliquer par une augmentation du nombre de véhicules, due à un accroissement du développement urbain et commerciale des zones desservies par la RN9 (Zone Franche de Dillon, Etang Z'Abricots, Agora).

VI.3 Comparaison entre les tendances et les concentrations en dioxyde d'azote

La carte suivante illustre une comparaison entre la spatialisation de la tendance d'évolution et les concentrations moyennes en NO_2 supérieures à la valeur limite pour la protection de la santé (40 $\mu g/m^3$) en 2023.

Carte VI-1: Concentrations moyennes en dioxyde d'azote supérieures à 40 μg/m³ et tendance d'évolution en 2023

<u>A noter</u>: Les concentrations moyennes en NO_2 pour l'année 2023 sont illustrées par les points dont le code couleur précise le niveau de concentration obtenu.

Axes	Sites	Concentration en NO ₂ (μg/m³)	Tendance (%)
D41	28	68.3	-53.5
D41	29	44.4	-47.6

Tableau VII-4 : Concentrations en dioxyde d'azote supérieures à 40μg/m³ et les tendances associées. Les tendances positives sont en rouge et les négatives en bleu.

Une baisse des concentrations en dioxyde d'azote durant ces dernières années est observée sur tous les sites mesurant une concentration en dioxyde d'azote supérieure à la valeur limite pour la protection de la santé de $40\mu g/m^3$ (points rouge). Sur ces sites, la qualité de l'air s'améliore même si le risque de dépasser les normes sur cet axe reste élevé.

Axes	Sites	Tendance (%)	Concentration en NO ₂ (μg/m³)
A1	37	+39.3	15.8
N1	73	+8.8	12.9
N5	61	+4.6	17.6
N9	79	+12.1	8.3
INS	80	+19.6	14.6

Tableau 5 : Tendance positives et les concentrations en dioxyde d'azote associées. Sont notés en vert, les concentrations inférieures au SES, en orange les concentrations supérieures au SES et en rouge les concentrations supérieures à la valeur limite.

5 sites montrent une tendance d'évolution positive des concentrations en dioxyde d'azote.

La tendance maximale est mesurée sur le site 37 situé sur l'autoroute A1, au niveau de l'échangeur de Dillon. Sur ce site, une augmentation des concentrations en NO₂ est observée durant ces trois dernières années, avec des concentrations mesurées qui dépassent le SES entre 2019 à 2021.

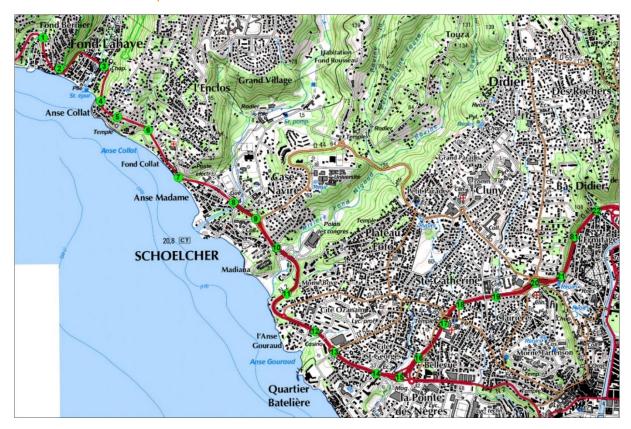
VII. Conclusion

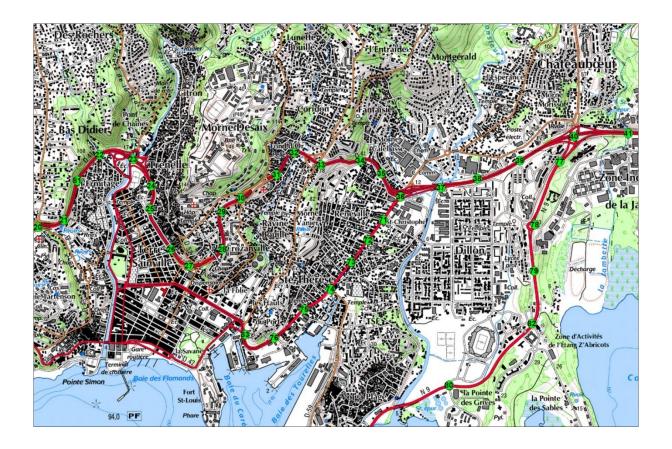
L'étude menée en 2023 dans la zone de la CACEM a permis d'évaluer la quantité de dioxyde d'azote NO_2 dans l'air, par la mise en place de tubes passifs, le long des principaux axes routiers. Cette étude a également permis de spatialiser les concentrations et les tendances d'évolution en NO_2 et de définir les zones les plus impactées par la pollution automobile.

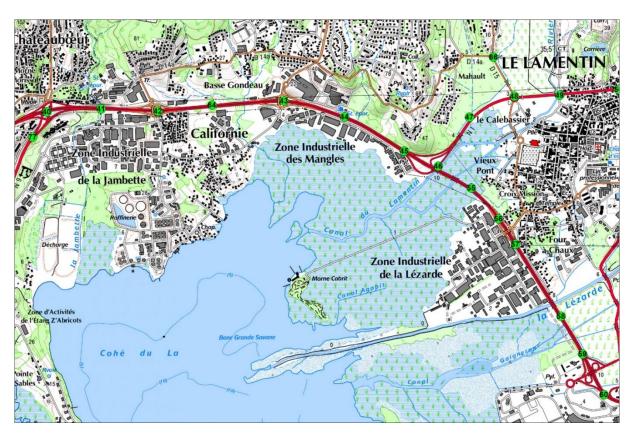
Cette étude s'est déroulée durant 4 campagnes de 2 semaines représentant 14% du temps de l'année permettant d'estimer une moyenne annuelle. Les concentrations moyennes annuelles en NO_2 , en chaque site de mesure, peuvent ainsi être comparées à la valeur limite annuelle pour la protection de la santé de $40~\mu g/m^3$ et aux seuils d'évaluation supérieur et inférieur, seuils utilisés pour définir le risque de dépassement des normes environnementales et ainsi, la stratégie de mesure à mettre en place dans ces zones.

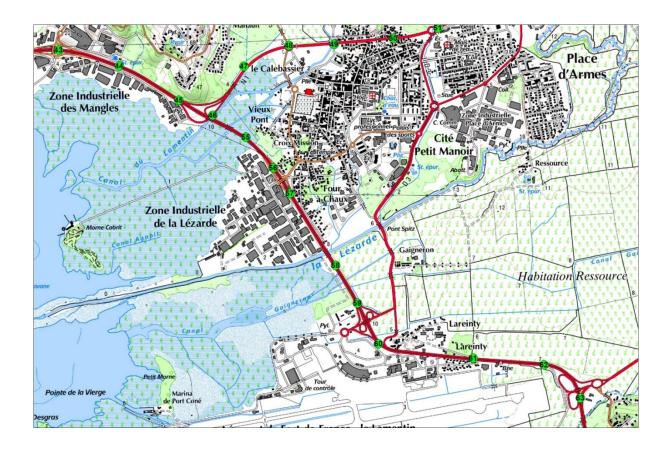
Les concentrations maximales sont mesurées sur la rocade D41 et l'autoroute A1. En 2023, la valeur limite annuelle pour la protection de la santé a été dépassée sur 2 sites positionnés le long de la rocade (D41) sur la période de mesure.

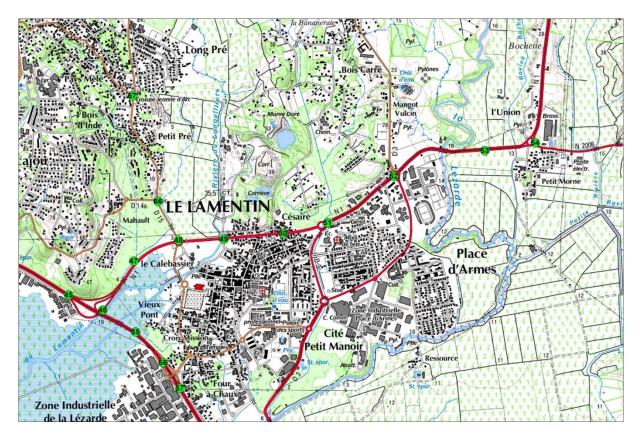
Le site qui enregistre la concentration maximale en NO₂ est situé à 500 mètres avant l'entrée du tunnel de Concorde en direction du Lamentin. A l'entrée de ce tunnel, Madininair possède une station de mesure de type « trafic » qui permet de mesurer le NO₂ en continu et de transmettre une information publique en temps réel du dépassement des normes environnementales.

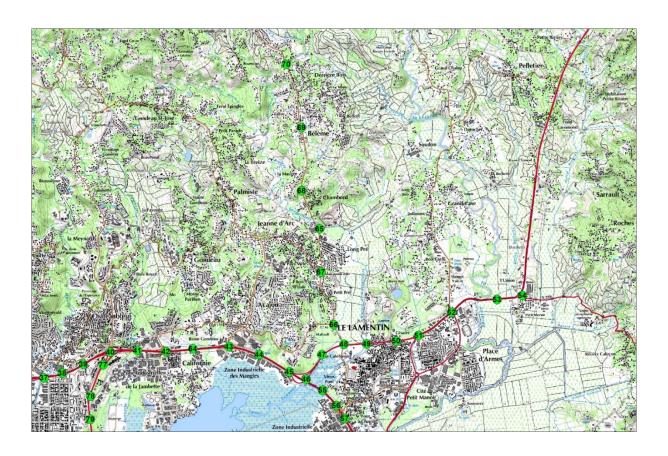

La comparaison des résultats de 2023 avec ceux des années précédentes montrent une tendance globale à la baisse des concentrations en NO₂. Seule la route nationale 9 présente une tendance moyenne à la hausse à l'issue des mesures de 2023. Sur certains des axes ciblés, des points de mesure présentent également ponctuellement des tendances à la hausse pouvant atteindre 39%, notamment aux niveaux des intersections.


Deux points sensibles ressortent de cette étude :


- 2 sites enregistrent des concentrations en dioxyde d'azote supérieures à la limite de protection pour la santé sur la rocade (D41). Cependant, ces sites montrent une tendance à baisse depuis 2012.
- Une tendance positive est observée sur la RN9. Cette hausse peut s'expliquer par une augmentation du nombre de véhicules due à un accroissement du développement urbain et commercial des zones desservies par la RN9 (Zone Franche de Dillon, Etang Z'abricots, Agora).


VIII. Annexes


VIII.1 Cartes d'implantation



VIII.1 Données

Axes	Sites					Concent	rations en diox	yde d'azote (μ	ug/m³)					Tendance
Axes	Sites	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	%
	36	52.0	43.4	35.0	41.1	29.9	25.1							
	37	12.0	38.1	20.5	20.4	17.2	14.7	27.1	37.1	36.8	33.5	30.2	15.8	39.3
	38		54.7		47.2	40.5	30.3							
	39	47.0	41.3	43.4	60.0	54.6	46.8							
	40	45.0	43.1	58.2	47.6	44.4	54.2	41.2	48.3	54.4	41.2	38.1	24.8	-26.2
	41	34.0	32.5	35.0	41.0	29.7	18.5	16.6	23.1	23.2	22.5	16.8	14.8	-58.5
	42	95.0	58.0	49.0	80.4	38.1	38.6	38.1	34.7	40.1	33.6	31.8	15.6	-74.7
	43	52.0	22.0	37.0	46.8	34.0	33.2	16.9	34.8	39.6	28.7	29.9	17.9	-39.0
A1	44		32.4		45.8	35.5	27.3	19.6	27.0	33.7	24.8	19.2	15.8	-55.6
AI	45	51.0	45.1	24.2	49.0	36.2	17.7							
	46		26.9		44.9	41.5	26.9	23.9	34.7	40.3	28.0	28.3	17.1	-43.5
	55	49.0	16.0	21.2	30.8	14.0	18.6							
	56		5.7	14.5	44.7	27.6	19.7	16.5	27.8	23.6	20.6	16.9	13.7	-9.5
	57	42.0	35.4		47.5	48.2	28.6							
	58	13.0	22.8	30.6	36.0	25.8								
	59		26.6		42.2	10.5	5.8							
	60				35.0	22.1	13.8	17.5	25.4	21.9	19.4	22.0	13.3	-36.9
	64		18.0		25.0	29.0	16.7	17.7	25.9	26.8	18.1	22.5	13.3	-28.8
	65				19.0	14.6	9.5	8.9	13.6	10.6	13.9	7.8	7.0	-49.6
	66				19.0	17.0	13.1	14.7	21.2	16.4	17.2	11.8	9.2	-32.2
D15	67				12.0	7.5	5.2	3.8	11.2	7.1	4.7	3.9	4.0	-58.1
	68				24.0	20.6	16.3	13.2	16.8	16.4	13.7	13.6	11.5	-46.1
	69				23.0	26.1	24.8	15.4	22.3	31.9	24.5	19.5	12.8	-23.6

Aves	Sites					Concenti	rations en diox	yde d'azote (μ	ug/m³)					Tendance
Axes	Sites	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	%
	70					11.0	9.4	10.0	13.0	11.6	4.8	3.3	4.5	-62.8
	16	19.0	77.0		31.0	34.0	42.6	16.9	34.2	28.8	33.5	30.5	21.8	-21.1
	17		44.0		109.0	109.0								
	18	57.0	63.0	35.0	44.0	28.0	30.5	25.5	25.0	29.1	23.5	22.0	14.4	-73.8
	19	20.0	66.0	50.0	76.0	13.0	12.3	6.1	13.3	10.3	16.7	9.0	7.3	-96.8
	20	61.0	44.0	44.0	52.0	33.0	18.6	28.5	33.8	31.1	27.5	21.2	14.1	-68.8
	21	94.0	53.0	23.0	25.0	24.0	19.9	11.4	18.4	24.6	14.3	16.7	6.5	-98.0
	22	128.0	17.0	71.0	66.0	60.0	46.4	53.2	42.0	65.1	51.3	39.1	23.7	-56.7
	23	47.0	31.0	28.0	40.0	28.0	45.1	14.7	21.8	22.6	25.4	21.8	17.3	-55.1
	24		43.0		50.0	20.0	38.3	28.0	33.9	36.9	31.2	29.1	21.0	-32.7
	25	37.0	28.0	34.0	27.0	26.0	22.3	14.3	19.3	22.0	15.8	16.5	10.8	-65.3
D41	26		30.0	33.0	28.0	27.0	28.4	18.4	25.8	26.9	23.8	23.2	16.8	-35.4
	27		37.0		48.0	29.0	25.3	14.3	19.5	22.1	14.5	15.0	14.6	-71.9
	28	177.0	128.0	167.0	126.0	160.0	110.4	94.7	104.9	100.9	118.0	80.7	68.3	-53.5
	29		94.0		96.0	97.0	67.0	61.3	61.5	59.6	65.0	61.4	44.4	-47.6
	30	68.0	75.0	42.0	37.0	53.0	38.6	43.9	46.7	53.7	44.3	32.8	30.9	-44.5
	31	37.0	47.0	30.0	38.0	33.0	29.5	15.2	27.2	33.2	26.0	23.8	12.0	-54.3
	32		54.0		63.0	31.0	17.6	21.9	14.2	44.1	31.8	29.9	20.4	-42.5
	33		54.0		82.0	28.0	45.3	45.3	65.4	84.9	35.5	35.8	16.2	-46.2
	34	105.0	19.0	102.0	48.0	67.0	28.3	18.1	24.9	26.1	20.0	20.9	11.0	-92.7
	35		12.0		43.0	34.0	42.8	20.2	38.4	52.6	43.5	29.3	26.0	-16.2
	81		80.0			52.0							8.4	
	47				21.0	21.9	21.4							
N1	48				30.0	29.4	19.9	17.2	13.8	24.3	24.4	14.0	21.5	-32.8
IAT	49				50.0	36.4	22.5	22.7	41.6	54.4	23.6	17.2	11.8	-54.9
	50				31.0	34.6	18.8	14.1	23.9	26.6	18.8	12.5	12.1	-57.5

Avec	Sites					Concenti	ations en diox	yde d'azote (μ	ug/m³)					Tendance
Axes	Sites	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	%
	51				61.0	17.9	20.7	26.9	25.1	31.9	22.7	19.9	10.8	-64.0
	52				48.0	43.1	27.1	24.9	33.0	40.6	17.1	11.2	13.1	-71.6
	53				17.0	8.3	6.2	5.4	20.7	10.9	13.2	9.4	8.1	-14.4
	54				23.0	12.7	13.1	11.6	18.1	19.2	18.8	17.6	10.6	-12.2
	71		30.0			18.0	24.5	13.3	20.7		22.0	18.3	16.3	-26.0
	72	19.0	33.9	22.6		12.2		19.3	17.9			7.1	25.4	
	73		15.0			17.1	7.6	20.3	0.5	13.9		11.8	12.9	8.8
	74	18.0	14.8	12.2		16.0	11.2	17.8	15.9	12.4	12.6	12.5	10.7	-26.4
	75	35.0	27.1	18.3		26.3	12.0	10.5	19.8	13.9	17.9	13.5	11.5	-34.6
	76	20.0		16.5		19.2	13.5	9.6	16.2	15.2	13.8	12.2	11.9	-24.0
	83							21.0	28.2	20.1	18.4	15.2	16.1	-38.1
	1	8.0	7.0	6.0	16.0	11.0	4.2	4.1	8.1	6.2	11.1	3.1	2.8	-46.3
	2	37.0	31.0	25.0	30.0	21.0	19.8	14.1	20.3	16.4	14.7	13.7	7.1	-73.7
	3	19.0	24.0	4.0	21.0	13.0	10.4	10.0	13.8	11.4	11.3	9.9	7.7	-53.4
	4	41.0	42.0	49.0	31.0	33.0	26.2	18.2	28.5	21.2	22.3	17.4	9.0	-72.2
	5		81.0		75.0	46.0	60.5	19.4	19.3	17.7	21.0	12.2	9.7	-97.3
	6	20.0	24.0	15.0	24.0	14.0	13.6	11.5	14.2	12.1	17.4	15.5	7.9	-47.3
	7	22.0	17.0	14.0	31.0	20.0	13.3	11.9	15.1	16.4	16.9	9.8	6.4	-53.3
N2	8	8.0	3.0		12.0	6.0	3.4	5.6	8.8	6.6	8.5	3.0	3.5	-50.2
	9	35.0	52.0	36.0	45.0	34.0	39.4	30.2	27.8	50.6	48.8	29.5	27.0	-18.5
	10		27.0	10.0	28.0	21.0	26.4	16.9	23.5	25.9	18.2	12.4	7.1	-41.1
	11	43.0	28.0	26.0	69.0	38.0	23.0	26.4	34.3	37.2	27.5	30.8	13.1	-42.3
	12		24.0		38.0	22.0	17.4	12.6	20.1	15.5	14.7	10.8	9.5	-71.9
	13	56.0	52.0	20.0	61.0	46.0	35.4	35.0	34.7	38.2	43.3	22.7	19.5	-48.9
	14	71.0	53.0	22.0	54.0	33.0	27.4	29.1	32.8	39.8	34.0	26.0	15.7	-61.2
	15	27.0	53.0	21.0	43.0	43.0	27.5	26.9	26.6	34.2	31.6	27.3	17.3	-35.9

Axes	Sites	Concentrations en dioxyde d'azote (µg/m³)												Tendance
		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	%
N5	61				27.0	19.5	16.0	25.2	35.2	29.4	31.1	23.3	17.6	4.6
	62				36.0	26.6	22.8	15.3	22.9	20.8	20.2	12.7	14.1	-57.6
	63				23.0	19.2	15.2							
N9	77					10.2	15.7							
	78					19.4	10.6	19.4	26.1	16.8	18.1	13.9	14.9	-12.7
	79					6.4	6.3	9.1	16.2	8.0	8.5	7.9	8.3	12.1
	80					9.2	8.6	10.8	15.3	10.1	11.7	6.3	14.6	19.6
	82					10.2	10.7	11.0	17.8	15.4	14.3	13.0	6.7	-3.7

31, rue du Professeur Raymond Garcin Allée du Prunier - 97200 Fort-de-France Tél.: 0596 **60 08 48** info@madininair.fr www.madininair.fr

